

eDNA as a tool for biodiversity assessments: what's next?

Eva BELLEMAIN

SPYGEN

1) Specific approach (eDNA barcoding) Experience from 3 case studies

- 2) Multispecific approach (eDNA metabarcoding)
- Markers
- Reference databases
- Case study: fish diversity assessments in streams
- 3) Multigroup approach (global biodiversity screening)
- Biodiversity inventories
- Bioindication

4) Challenges / limits

- Primer validation
- Laboratory requirements
- Bioinformatics

eDNA barcoding

Pelobates fuscus

Emys orbicularis

Triturus cristatus

Aeshna viridis

Mustela lutreola

Leucorrhinia pectoralis

Trichobilharzia sp.

Procambarus clarkii

Arvicola sapidus

Lithobates

catesbeianus

Microtus oeconomus

Zingel asper

Neovison vison

Misgurnus fossilis

eDNA barcoding

eDNA barcoding

Case study: vertebrate

First study showing species detection using eDNA from water samples

Bullfrog (*Lithobates catesbianus*)

 \rightarrow Sampling of water (15 ml * 3 tubes per sampling location) over 9 ponds

Detection

- High density
- Low density
- Absence

Ficetola et al. 2008

Case study: vertebrate

SPYGEN

Comparative study for the survey of the bullfrog on 49 sites (SW France)

- Classical survey: Diurnal observations & nocturnal calling surveys
- eDNA survey: 3 samples of water (15 mL) specific primer pair for target organism

→ eDNA: 2,5 times faster in the field and 2,5 times cheaper than traditional surveys

Dejean et al. 2012

Perspectives: SPYBOAT[•] → more exhaustive sampling (optimised detection of rare species)

- Airboat equipped with
- Peristaltic pump
- Interchangeable hull
- Remote control
- Video camera

SILA

l'oxygène

à la source

Annecy

Life cycle of *trichobilharzia* sp. causing cercarial dermatitis or swimmer 'itch

Case study: parasite

Comparative study to evaluate the efficiency of the eDNA approach to detect *Trichobilharzia* sp. within natural swimming areas

Method for detecting the parasite in the field

3) Put the lymnea in the fridge then under a lamp to stimulate the release of cercariae

4) Count the number of cercariae released (usually less than 1%)

1) Collect substrate on the bottom using quadrats

Case study: parasite

2) Isolate lymnea, count and measure them

Proposed method for detecting the parasite using eDNA

1) Sample around the pool (water samples, filtration or sediments)

- 2) Develop short and specific primers
- 3) Extract DNA + qPCR
- 4) Sequence to identify the parasite

Positive control: Annecy site where the parasite was known to be present (0,8% in 2012)

- → Trichobilharzia frankii detected and identified in different samples
- \rightarrow eDNA method efficient, less time consuming, easier to implement
- → Perspectives for the detection of other parasites and pathogens and the prevention of health risks for humans and animals

SPYGEN

1) Specific approach (eDNA barcoding) Experience from 3 case studies

2) Multispecific approach (eDNA metabarcoding)

- Markers
- Reference databases
- Case study: fish diversity assements in streams
- 3) Multigroup approach (global biodiversity screening)
- Biodiversity inventories
- Bioindication

4) Challenges / limits

- Primer validation
- Laboratory requirements
 - **Bioinformatics**

eDNA metabarcodes

- Must amplify short DNA fragments
- Must be adapted for the different taxonomic groups
- Must be highly versatile (to equally amplify the different target DNAs)
- Must have a good taxonomic resolution (ideally to the species level)

Identified markers based on those criteria

Group	Region	Amplified lenght
Amphibians	125	23-59 bp
Teleostean fishes	12S	60-80 bp
Mammals	125	71-87 bp
Chiroptera	12S	71-87 bp
Molluscs / Arthropods	16S	35-40 bp
Odonates	Under development	
Crayfishes	Under development	

SPYGEN®

Reference databases

Reference databases developed at SPYGEN (soon public)

- Chiroptera: 42 species in Europe

- Fishes: 83 species in Europe

- Amphibians: 47 species in Europe

Case study: biodiversity in streams

Electric fishing

ONEMA Office national de l'eau et des milieux aquatiques

eDNA metabarcoding

SPYGEN

- 1) Specific approach (eDNA barcoding) Experience from 3 case studies
- 2) Multispecific approach (eDNA metabarcoding)
- Markers
- Reference databases
- Case study: fish diversity assements in streams

3) Multigroup approach (global biodiversity screening)

- Biodiversity inventories
- Bioindication

4) Challenges / limits

- Primer validation
- Laboratory requirements
 - **Bioinformatics**

eDNA for biodiversity inventories and environmental watch

Find out what organisms exist in a given area:
Optimise the detection and monitor rare, endangered or cryptic species
Evaluate conservation priorities of an area
Bioprospecting

- Allows an early detection of alien species:
 - ↗ chances of eradication
 - > impact of the alien species on the ecosystem
 - > cost of eradication action

 Allows to adapt conventional methods to the species present on the sites to gather additional field data (e.g. age classes, quantitative data, etc...)

eDNA for bioindication

- → Detect species that can be used to monitor the health of an environment or ecosystem (i.e. species whose function, population, or status can reveal the degree of integrity of an ecosystem)
 - e.g: Macroinvertebrates, diatoms

 \rightarrow Produce aquatic biodiversity indices and follow its evolution through time

Which target groups would be interesting to survey?

(Insects, molluscs, parasites, plants ... ?)

Species composition of mayflies and caddisflies from bulk samples

(454 pyrosequencing using a 130 base COI mini-barcode)

 \rightarrow Need for optimised metabarcodes

Hajibabaei et al. 2011

SPYGEN®

- 1) Specific approach (eDNA barcoding) Experience from 3 case studies
- 2) Multispecific approach (eDNA metabarcoding)
- Markers
- Reference databases
- Case study: fish diversity assements in streams
- 3) Multigroup approach (global biodiversity screening)
- Biodiversity inventories
- Bioindication

4) Challenges / limits

- Primer validation
- Laboratory requirements
- Bioinformatics

SPYGEN® Risk of errors:

- False positives: species detected while it is not present

→ non-specificity of the primers used for DNA amplification
→ contaminations (in the field and/or in the laboratory)
→ protracted DNA persistence after the death of the organism
→ Poor reference database

- False negatives: species not detected while it is present
 - \rightarrow non-adapted primers
 - \rightarrow poor sampling
 - \rightarrow poor extraction protocol efficiency
 - \rightarrow presence of PCR inhibitors in the samples
 - → Insufficient amount of DNA of the focus species/group in the ecosystem
 - \rightarrow Poor reference database

SPYGEN

Primer validation

Classical laboratory

DNA extraction room

DNA amplification room

eDNA laboratory

- Physical separation between rooms
- Differential pressures between rooms
- UV treatments
- Special equipments
- Specific rules

Laboratory requirements

SPYGEN[®] eDNA laboratory: Laboratory requirements

Classical laboratory

DNA extraction room

eDNA laboratory

DNA amplification room

Laboratory requirements

Bioinformatics

- Increasing amount of data produced (e.g. HiSeq 200: 6 billions of reads of 100 bases representing 3000 tons of paper if printed)
 - → Need for more server storage capacity, computing, reliable softwares
 - → Time consuming!

Hittiri I. Humma Inc. All rights reserved

Difficulties with amplification/sequencing errors (difficulties to work with rare species/MOTUs)

 \rightarrow Need for improved bioinformatics softwares

- eDNA as a useful and promising tool for biodiversity assessment and conservation, complementing field methods
- Need for high quality reference databases from different countries, using defined markers → Partnership important

→ A consortium (similar to CBOL) would be very useful!

Acknowledgments

SPYGEN®

Thanks for your attention!

And thanks to colleagues, partners and collaborators:

Tony Dejean, Alice Valentini, Coline Gaboriaud, Pierre Taberlet, Christian Miquel, Claude Miaud, City of Antwerpen, Thierry Vercauteren, RAVON, ONEMA, INRA...

