# **Environmental DNA** as a basis for species conservation

Jelger Herder Brussel, 19 april 2013





#### **RAVON**

#### **Reptile Amphibian Fish Conservation Netherlands**



- 28 professional staff members
- 2000 volunteers





Aim: to protect and increase the number of sustainable populations of reptiles, amphibians and fish



#### **RAVON**

#### We collect distribution data for conservation

- Volunteers / professional / other organizations
- Coordinate national monitoring programs
- National Database Flora and Fauna
  - 60.000.000 records!

- → Data used for
  - → Species protection plans
  - → Habitat management
  - → Red Lists





#### Partnership with SPYGEN

Both organizations complement each other



- eDNA labwork
- Long experience
- Lab equipped for eDNA
- eDNA protocols
- Reference database and primers



- Ecology and distribution of species
- Field methods
- Capable to organize large projects
- Collecting DNA for reference database







#### Some species are hard to monitor

Pond loach (Misgurnus fossilis)





- Volunteers → dipnet
- Professionals → electro fishing
- However pit-tag research showed low detection chance
- Habitat



#### Some species are hard to monitor

Common spadefoot toad (*Pelobates fuscus*)



• Soloyoption reportings per involver and strugger less of the since 1950)



# **Early warning invasive species**





COSTS



# **Early warning invasive species**





COSTS



#### **New approach: environmental DNA**

 Species that live in the water release DNA in the water via skincells, faeces and urine.





#### eDNA can be collected

- DNA spreads due to dissolving properties of water
- Collecting water samples = fast and efficient
- Those samples can be analysed for eDNA





#### eDNA shows recent presence

 Experiments showed that eDNA in the water breaks down within three weeks (Dejean et al., 2011).





# eDNA American bullfrog

- First studies with eDNA were performed on the American bull frog (*Lithobates catesbeianus*) in France (Ficetola et al., 2008)
- On the IUCN list of 100 worst invasive species in the world!





## First study in the Netherlands

- In 2011 RAVON and SPYGEN → pilot study on the use of eDNA to find pond loaches (*Misgurnus fossilis*) (Herder *et al.*, 2012)
  - Detection chance of 87,5% (7 out of 8 locations)
  - Control locations (4) negative
- In 2012 large inventory projects in the Netherlands
  - Found new locations, but also missed some controls!





#### eDNA common spadefoot

- Endangered in the Netherlands (Red List)
  - Only 35 populations left
  - 74% decline since 1950 and still declining!
- Very difficult to monitor
- Reintroduction program → info needed for conservation!
- Seemed a perfect species for eDNA!





#### eDNA common spadefoot

- eDNA within Network Ecological Monitoring (NEM)
  - 23 historic populations (extinct/unknown)
  - 4 control locations
- Results
  - eDNA positive for common spadefoot on 6 locations!
  - 3 out of 4 control samples positive (75% detection)
  - 17% increase in known populations!







#### Pilot studies dragonflies

Green hawker (Aeshna viridis)



- 7/9 waters (detection 78%)
- Missed locations→sampling later in the year

Large white-faced darter
 (Leucorrhinia pectoralis)



- 6/8 waters (detection 75%)
- Missed location → also missed with traditional methods

Quick screening + monitoring in longer period





# **Pilot study watershrew**

Water shrew (Neomys fodiens) perfect for eDNA?



- But.... no detection with eDNA on 10 pilot locations
- Possible explanations:
  - Not present at exact location during sampling
  - Small animal, low densities
  - Ecology → lives primarily on land!





#### **Pilotstudy Root vole**

- Root vole (*Microtus oeconomus*) → habitat directive?
  - Higher densities, lives close to the water and swims.





- Yes.... detection of root vole on 5 out of 10 pilot locations
- Uncertain if eDNA "missed" the root vole on the other 5 locations or if the species was not present → follow up in 2013



#### **Estimating densities via eDNA**

- In the lab
  - A significant relation between the number of larvae of the Northern crested newt and common spadefoot and the amount of eDNA in the water was found.



Thomsen *et al.*, 2012



#### **Estimating densities in the field**

- Study on Northern crested newts near Tilburg
  - 9 waters checked with eDNA and with traditional methods (dipnet + amphibian traps)
- Results traditional methods
  - 2 ponds with crested newts
- Results eDNA
  - 5 ponds with crested newts
- The eDNA signal was clearly stronger in the ponds with many larvae!





#### Estimating densities in the field

- But results are variable
  - For the pond loach we sampled on the same location with variable results.
- Many factors might influence amount of eDNA
  - Species / activity
  - Microbial activity
  - Temperature
  - pH
  - Conductivity
  - Organic material
  - Watertype (flow rate, size → dillution )
- Research needed per species, per habitat and per period.





# eDNA for more species?

Not for species that are easy to monitor!



**Spined loach** *Cobitis taenia* 



**Dipnet** 



# eDNA for more species?

Promising for ...







# The next step: multispecific approach

- Universal primer for group of species
- All DNA of these group is amplified in the PCR
- Al amplified DNA is sequenced using Next Generation Sequencing (NGS)
- Matching the DNA to a reference database on a computer





# The next step: multispecific approach

- Successfully tested by SPYGEN in France
  - Amphibians in ponds: eDNA gave a similar amount or more species than traditional

Fish in the Rhône: eDNA detected 23 species against 19 species with electrofishing



# The next step: multispecific approach

- RAVON carried out research in the Netherlands
  - Comparisson between Water Framework Directive sampling and eDNA
  - Preliminary results (eDNA samples have not been fully analyesed yet)
    - eDNA 19 species, electrofishing 20 species.





#### **Challenges**

- Data management
  - 1 run → 6 billion codes
  - Pile of paper of 48 km!
- Reference databases
  - Genbank contains many errors
  - DNA codes unknown for many species
  - Building own reference database!





#### Pitfalls in the field

■ False positives – Species not present → positive eDNA score!



Contamination Fieldwork protocols
Working sterile



 Theory of excrements and movement of DNA by herons/ducks

Chance thought to be very small!







#### Pitfalls in the field

 False negatives – Species is present, eDNA scores negative!

- Sampling
  - Method Fieldwork protocols
  - Location Species experts for sampling
- Period Tests + Ecological Knowledge

  Pilot studies!





#### Implications false negatives

- Endangered & protected species
  - No species protection measures (for example on construction sites)
  - Locations not integrated in species protection plans





#### Implications false positives

- Endangered & protected species
  - Waste of means for habitat improvements (for example the construction of breeding ponds)
- Invasive species
  - Unnecessary actions taken for eradication and control





#### **Traditional methods are neither perfect!**

- False negatives
  - The efficiency of each method differs per species!

- False positives
  - Misidentification of species

Movement by predators





#### **Advantages of eDNA**

- Higher detection chance
- Lower costs
- Species specific
- No stress
- No spread invasive species/diseases
- More reliable negatives







#### **Benefits traditional methods**

- Collecting info on length, age, condition
- Feeling with the species → support for conservation
- Invaluable work of volunteers cannot be replaced



Ranavirus

Support for conservation

Volunteers



#### **Questions?**





www.environmentaldna.com